아주대학교

검색 열기
통합검색
모바일 메뉴 열기
 
 
 

주요 연구성과

NEW 이준우 교수 공동 연구팀, 이산화탄소 전환 효율 향상 新촉매 개발


아주대 이준우 교수 공동 연구팀이 이산화탄소 전환 기술의 생산 효율을 크게 향상시킬 수 있는 새로운 촉매를 개발하는 데 성공했다. 이에 앞으로 친환경 고부가가치 화합물 생산을 비롯한 친환경 에너지 전환 기술 분야 발전에 기여할 수 있을 전망이다. 


이준우 교수(응용화학생명공학과·대학원 분자과학기술학과 / 사진)는 미국 예일대와 캐나다 토론토대가 함께 한 국제 공동 연구팀이 산성 환경에서 이산화탄소(CO2)의 전기화학적 환원을 통해 고부가가치 화합물 생산 효율을 크게 높일 수 있는 새로운 촉매를 개발했다고 밝혔다. 


해당 내용은 ‘CO2 전기환원에서의 높은 탄소 전환 효율과 산성 안정성을 지닌 구리 입자 전구체(Acid-Stable Cu Cluster Precatalysts Enable High Energy and Carbon Efficiency in CO2 Electroreduction)’라는 제목으로 화학 분야 국제 저명 학술지인 <미국화학회지(Journal of the American Chemical Society, JACS)> 9월호에 게재됐다. 미국 예일대와 캐나다 토론토대 연구팀이 함께 참여했다. 아주대 연구팀은 구리 입자 전구체의 설계-합성 및 화학구조 분석을 수행했고, 예일대 연구팀은 X-ray를 통한 결정 구조 변화 분석을, 토론토대 연구팀은 합성된 전구체를 활용한 이산화탄소 환원 실험과 결합 에너지 계산을 맡았다.


최근 기후 변화와 탄소 중립에 대한 전 지구적 관심이 높아지면서, 대표적 온실가스인 이산화탄소(CO2)를 화합물로 바꿀 수 있는 전기화학적 전환 기술이 주목받고 있다. 친환경 기술을 통해 온실가스를 줄이고 유용한 물질도 생산할 수 있어, 탄소 저감과 에너지 전환이라는 두 가지 목표를 함께 달성할 수 있는 잠재력을 가지고 있는 것.


현재 이산화탄소(CO2)의 전기화학적 전환은 전극에 전류를 가해 이산화탄소를 분해하고, 이를 고부가가치 화합물로 전환하는 방식으로 이루어진다. 이 과정에는 주로 구리 기반의 촉매가 사용되며, 이산화탄소를 에틸렌 같은 C2+ 물질로 변환하는 데 주력하고 있다. 변환된 화합물은 포장재, 가전제품, 의료용품, 건축자재 등 다양한 제품에 활용되거나 에틸렌 글리콜, 스티렌, 폴리염화비닐(PVC) 등 기초 소재로 쓰인다. 


하지만 촉매의 낮은 내구성, 특히 산성 환경에서 구리 촉매의 불안정성으로 인해 장시간 높은 효율을 유지할 수 없다는 것이 한계로 지적되어왔다. 또 저밀도의 이산화탄소 전환 활성 부위로 원하는 C2+  물질의 선택성이 충분히 높지 않다는 점이 문제로 남아있다. 전환 과정에서 반응하는 촉매의 전환 활성 부위가 상대적으로 적어, 이산화탄소 전환 시 목표로 하는 에틸렌 같은 C₂+ 물질 대신 다양한 부산물이 함께 생성되기 때문이다. 때문에 원하는 물질의 선택성이 높지 않고, 대규모 공정에 적용할 경우 경제성 확보가 어려워 상업화의 큰 걸림돌로 작용해왔다. 


이에 아주대 국제 공동 연구팀은 산성 환경에서도 안정적인 촉매를 개발하기 위해 노력해왔다. 연구팀이 개발한 촉매는 산성 조건에서 구리 이온이 빠져나가면서 C2+  활성 부위가 비활성화, 성능 저하를 불러왔던 기존의 문제점을 해결해냈다. 공동 연구팀이 개발한 구리 입자 전구체는 산성 조건에서도 부반응 없이 이산화탄소 전환 반응이 이루어지는 동안 활성화, 미세 구리 나노 입자로 변환되며 이 과정에서 고밀도의 이산화탄소 전환 활성을 효과적으로 유지해냈다. 


연구팀이 개발한 구리 입자 전구체(Cu-mono)로 파생된 나노입자촉매는 100mA/cm²의 전류 밀도에서 57%의 에틸렌 전류 효율을 기록했으며, 이는 기존 산성 이산화탄소 환원 시스템 대비 에너지 효율을 약 1.4배 향상시킨 결과다. 연구팀은 개발 과정에서 구리 입자 전구체의 유기 치환체 결합이 변환된 구리 나노 입자의 이산화탄소 전환 활성 부위를 보호하고, 성능을 유지 시키는 중요한 역할을 한다는 사실도 확인했다. 


논문의 주저자인 이준우 아주대 교수는 “이번 연구는 산성 환경에서 이산화탄소 전환 반응을 효율적으로 촉진할 수 있는 새로운 촉매를 개발해 냈다는 점에서 큰 의의가 있다”며 “특히, 낮은 전류에서도 높은 선택성과 에너지 효율을 달성함으로써, 이산화탄소 전기환원 기술의 상업화를 위한 기술적 한계 극복에 중요한 진전이 될 것”이라고 밝혔다.  


이준우 교수는 “탄소 배출을 줄이면서 고부가가치 화학물질을 생산할 수 있는 기술로 발전되어, 석유화학산업 전반에서 탄소 중립 실현과 부가가치 창출에 중요한 역할을 할 것으로 기대된다”라고 덧붙였다. 


이번 연구는 한국연구재단 세종과학펠로우십과 아주대학교 교내 연구비 지원을 받아 수행됐다.




리간드 가지 수에 따른 구리 나노 입자 형성 모식도. 리간드 가지 수를 다르게 하여 구리 클러스터 전구체를 설계 및 합성하고, 그중 단일 리간드 전구체는 미세 구리 나노 입자 형성을 유도하여 이산화탄소 전환 반응 중 고밀도의 구리 활성 부위를 유지했다.